Recent Advances in Schwarz Waveform Moving Mesh Methods – A New Moving Subdomain Method

نویسنده

  • Ronald D. Haynes
چکیده

It is well accepted that the efficient solution of complex partial differential equations (PDEs) often requires methods which are adaptive in both space and time. In this paper we are interested in a class of spatially adaptive moving mesh (r-refinement) methods introduced in [9, 10, 12]. Our purpose is to introduce and explore a natural coupling of domain decomposition, Schwarz waveform relaxation (SWR) [ 4], and spatially adaptive moving mesh PDE (MMPDE) methods for time dependent PDEs. SWR allows the focus of computational energy to evolve to the changing behaviour of the solution locally in regions or subdomains of the space-time domain. In particular, this will enable different time steps and indeed integration methods in each subdomain. The spatial mesh, provided by the MMPDE, will react to the local solution dynamics, providing distinct advantages for problems with evolving regions of interesting features. In this paper we detail and compare approaches which couple SWR with moving meshes. Section 2 provides a brief review of the r-refinement method. We contrast the related approaches introduced in [6, 7] with a new moving subdomain method in Sect. 3. We conclude in Sect. 4 with a brief presentation of numerical results to demonstrate the moving subdomain method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Schwarz Waveform Moving Mesh Method

An r-refinement (moving mesh) method is considered for solving time dependent partial differential equations (PDEs). The resulting coupled system, consisting of the physical PDE and a moving mesh PDE, is solved by a Schwarz waveform relaxation method. In particular, the computational space-time domain is decomposed into overlapping subdomains and the solution obtained by iteratively solving the...

متن کامل

Moving Mesh Non-standard Finite Difference Method for Non-linear Heat Transfer in a Thin Finite Rod

In this paper, a moving mesh technique and a non-standard finite difference method are combined, and a moving mesh non-standard finite difference (MMNSFD) method is developed to solve an initial boundary value problem involving a quartic nonlinearity that arises in heat transfer with thermal radiation. In this method, the moving spatial grid is obtained by a simple geometric adaptive algorithm ...

متن کامل

Additive Schwarz Methods with Nonre ecting Boundary Conditions for the Parallel Computation of Helmholtz Problems

Recent advances in discretizations and preconditioners for solving the exterior Helmholtz problem are combined in a single code and their bene ts evaluated on a parameterized model. Motivated by large-scale simulations, we consider iterative parallel domain decomposition algorithms of additive Schwarz type. The preconditioning action in such algorithms can be built out of nonoverlapping or over...

متن کامل

A fast and simple method for modeling of oil swelling in Co2 injection

In this paper, the role of molecular diffusion in mobilization of waterflood residual oil is examined. A moving mesh method is applied to solve the moving interface problem of residual oil blobs swelling by Co2 diffusion through a blocking water phase. The results of this modeling are compared with experimental results of a 2D glass micromodel experiment. Although, the solution method is applie...

متن کامل

Development of a Moving Finite Element-Based Inverse Heat Conduction Method for Determination of Moving Surface Temperature

A moving finite element-based inverse method for determining the temperature on a moving surface is developed. The moving mesh is generated employing the transfinite mapping technique. The proposed algorithms are used in the estimation of surface temperature on a moving boundary with high velocity in the burning process of a homogenous low thermal diffusivity solid fuel. The measurements obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011